

(Twin studies of) ADHD in adults

Henrik Larsson

Dept. of Medical Epidemiology and Biostatistics

Karolinska Institutet

Developmental Twin Study of Attention Problems

High Heritabilities Throughout Development

Zheng Chang, MSc; Paul Lichtenstein, PhD; Philip J. Asherson, PhD; Henrik Larsson, PhD

JAMA PSYCHIATRY/VOL 70 (NO. 3), MAR 2013

The heritability of clinically diagnosed attention deficit hyperactivity disorder across the lifespan

H. Larsson¹*, Z. Chang¹, B. M. D'Onofrio² and P. Lichtenstein¹

Psychological Medicine (2014), 44, 2223–2229.

Acknowledgements

- Zheng Chang
- Qi Cheng
- Therese Ljung
- Charlotte Skoglund
- Amir Sariaslan
- Johan Zetterqvist
- Paul Lichtenstein
- Arvid Sjölander
- Niklas Långström
- Ylva Ginsberg

- IMPACT
- Linda Halldner
- Eva Serlachius
- Brian D'Onofrio
- Seena Fazel
- Philip Asherson
- Andrew Merwood

Do we need a heritability study of clinically Karolinska diagnosed ADHD?

- 1. Is needed to explore how genetic factors influence ADHD across different levels of severity
 - → ADHD as a categorical disorder vs an extreme of a continuous trait

Do we need a heritability study of clinically Karolinska diagnosed ADHD?

- Is needed to explore how genetic factors influence ADHD across different levels of severity
 - → ADHD as a categorical disorder vs an extreme of a continuous trait
- 2. Is needed to resolve inconsistencies regarding the heritability of ADHD in adults

1. Genetic factors across levels of severity Karolinska Continuous trait measures of ADHD

1. Genetic factors across levels of severity Karolinska Categorical measures of ADHD

1. Genetic factors across levels of severity Karolinska

1. Genetic factors across levels of severity Karolinska Institutet

- However... limitations...
 - → Broad categories that contains milder and sub-threshold cases
 - → Lacked information on age of onset and impairment criteria

1. Genetic factors across levels of severity Karolinska Institutet

- However... limitations...
 - → Broad categories that contains milder and sub-threshold cases
 - → Lacked information on age of onset and impairment criteria
- Thus...
 - → More stringent diagnostic methods and narrow definitions of ADHD may generate different heritability estimates

Larsson, 2013

Boomsma, 2010

100

0

van den Berg, 2006

- Dutch and UK twin studies (Kan et al 2013; Merwood et al 2013)
 - Heritability of self-rated ADHD was low in <u>adulthood</u> and in <u>childhood</u>

- Dutch and UK twin studies (Kan et al 2013; Merwood et al 2013)
 - Heritability of self-rated ADHD was low in <u>adulthood</u> and in <u>childhood</u>
- Swedish longitudinal twin study; Chang et al (2013)
 - Heritability of ADHD in adults was substantial (78%) when both self and parent ratings were combined into a composite index of ADHD

2. The heritability of ADHD in adults Shared view of parent and self ratings

- Dutch and UK twin studies (Kan et al 2013; Merwood et al 2013)
 - Heritability of self-rated ADHD was low in <u>adulthood</u> and in <u>childhood</u>
- Swedish longitudinal twin study; Chang et al (2013)
 - Heritability of ADHD in adults was substantial (78%) when both self and parent ratings were combined into a composite index of ADHD
- Together this indicate that the low heritability for ADHD in adults is best explained by rater effects

- Dutch and UK twin studies (Kan et al 2013; Merwood et al 2013)
 - Heritability of self-rated ADHD was low in <u>adulthood</u> and in <u>childhood</u>
- Swedish longitudinal twin study; Chang et al (2013)
 - Heritability of ADHD in adults was substantial (78%) when both self and parent ratings were combined into a composite index of ADHD
- Together this indicate that the low heritability for ADHD in adults is best explained by rater effects
 - → But, a twin study of clinically diagnosed ADHD in adults is needed to close this question

Aim

Estimate the heritability of clinically diagnosed ADHD across the life
span with a specific focus on ADHD in adults

Aim

- Estimate the heritability of clinically diagnosed ADHD across the life span with a specific focus on ADHD in adults
 - Based on similarities in the heritability estimates between continuous trait measures and broad categorical definitions, we expect high estimates also for clinically diagnosed ADHD

Aim

- Estimate the heritability of clinically diagnosed ADHD across the life span with a specific focus on ADHD in adults
 - Based on similarities in the heritability estimates between continuous trait measures and broad categorical definitions, we expect high estimates also for clinically diagnosed ADHD
 - 2. Based on recent cross-informant twin studies, we predict high heritability also for ADHD in adults
 - Cross-informant measures and clinical diagnosis both focus on pervasive symptoms

Sample and measures

- Twins born between 1959 and 2001 from the Swedish Twin Registry with known zygosity
- Clinical data of ADHD diagnosis was available from 1997-2010
 - Diagnosis of ADHD according to ICD-10 (Patient Register; 1997-)
 - ADHD medication (Prescribed Drug Register; 2005-)

Sample and measures

	N	ADHD%
Total sample (1959-2001)	59,514	1.45%
Adults (1959-1991)	37,714	0.72%
Children and adolescents (1992-2001)	21,800	2.71%

Results: Tetrachoric within-twin pair correlations

	MZM	DZM	MZF	DZF	Opposite- sex twins
Tetrachoric correlations (95% CI)	0.90 (0.84-0.94)	0.48 (0.33-0.61)	0.81 (0.68-0.90)	0.50 (0.28-0.67)	0.49 (0.40-0.58)

Results: Model fitting results of univariate analysis of the full sample

	Fit of model compared to saturated model					
Model	-2LL	df	χ^2	Δdf	AIC	
Saturated model	8092.5	59489	-	-	-	
1. ACE Univariate						
Full sex-limitation model ^a	8112.0	59505	19.5	16	-12.5	
Common effects sex-limitation model	8112.0	59506	19.5	17	-14.5	
Null model	8113.5	59509	21.0	20	-19.0	
2. AE Univariate						
Full sex-limitation model	8112.5	59507	20.0	18	-16.0	
Common effects sex-limitation model	8112.5	59508	20.0	19	-18.0	
Null model	8113.7	59510	21.3	21	-20.7	

Results: Best fitting model

Clinical diagnosis of ADHD	Genetic effects (95% CI)		Non-Shared environment (95% CI)	
1. Full sample	0.88 (0.83-0.92)		0.12 (0.08-0.17)	

Results: Best fitting model

Clinical diagnosis of ADHD	Genetic effects (95% CI)	Non-Shared environment (95% CI)
1. Full sample	0.88 (0.83-0.92)	0.12 (0.08-0.17)
2. ADHD in Adults (1959-1991)	0.74 (0.59-0.85)	0.26 (0.15-0.41)

Conclusions and implications

- Heritability of clinically diagnosed ADHD is high across the life span
 - Similar heritability estimates for continuous trait measures, broad categorical definitions and narrow diagnostic definitions provide further support for ADHD as the extreme of a continuous trait
 - 2. High heritability for ADHD in adults indicate that the previous reports of low heritability is best explained by rater effects
- Molecular genetic studies of ADHD in adults
 - → Use cross-informant data that are developmentally informative (age-of-onset or longitudinal data)

Did I convince you?